研究業績

これまでの研究成果について、以下の国際雑誌に投稿し掲載されています。

No. 掲載年 タイトル 掲載雑誌 巻(号)項
1 2007 Isolation of multipotent stem cells from mouse adipose tissue. J Dermatol Sci. 48(1):43-52.
https://pubmed.ncbi.nlm.nih.gov/17644316/
2 2010 Age-related changes of p75 neurotrophin receptor-positive adipose-derived stem cells. J Dermatol Sci. 58(1):36-42.
https://pubmed.ncbi.nlm.nih.gov/20194005/
3 2010 Melanocyte stem cells express receptors for canonical Wnt-signaling pathway on their surface. Biochem Biophys Res Commun. 396(4):837-42.
https://pubmed.ncbi.nlm.nih.gov/20450888/
4 2011 Analysis of cell characterization using cell surface markers in the dermis. J Dermatol Sci. 62(2):98-106.
https://pubmed.ncbi.nlm.nih.gov/21382697/
5 2012 Bimodal effect of retinoic acid on melanocyte differentiation identified by time-dependent analysis. Pigment Cell Melanoma Res. 25(3):299-311.
https://pubmed.ncbi.nlm.nih.gov/22364180/
6 2013 Protective effect of hochuekkito, a Kampo prescription, against ultraviolet B irradiation-induced skin damage in hairless mice. J Dermatol. 40(3):201-6.
https://pubmed.ncbi.nlm.nih.gov/23294358/
7 2013 Major amino acids in collagen hydrolysate regulate the differentiation of mouse embryoid bodies. J Biosci Bioeng. 116(3):386-90.
https://pubmed.ncbi.nlm.nih.gov/23623897/
8 2013 The epidermal Integrin beta-1 and p75NTR positive cells proliferating and migrating during wound healing produce various growth factors, while the expression of p75NTR is decreased in patients with chronic skin ulcers. J Dermatol Sci. 71(2):122-9.
https://pubmed.ncbi.nlm.nih.gov/23642664/
9 2013 Wnt/β-catenin and kit signaling sequentially regulate melanocyte stem cell differentiation in UVB-induced epidermal pigmentation. J Invest Dermatol. 133(12):2753-62.
https://pubmed.ncbi.nlm.nih.gov/23702581/
10 2013 Lignin Induces ES Cells to Differentiate into Neuroectodermal Cells through Mediation of the Wnt Signaling Pathway. PLoS One. 8(6):e66376
https://pubmed.ncbi.nlm.nih.gov/23805217/
11 2013 Epithelial-mesenchymal transition of the eccrine glands is involved in skin fibrosis in morphea. J Dermatol. 40(9):720-5.
https://pubmed.ncbi.nlm.nih.gov/23855882/
12 2013 Bleomycin inhibits adipogenesis and accelerates fibrosis in the subcutaneous adipose layer through TGF-β1. Exp Dermatol. 22(11):769-71.
https://pubmed.ncbi.nlm.nih.gov/24118261/
13 2013 Analysis of the effects of hydroquinone and arbutin on the differentiation of melanocytes. Biol Pharm Bull. 36(11):1722-30.
https://pubmed.ncbi.nlm.nih.gov/24189417/
14 2014 Comprehensive analysis of melanogenesis and proliferation potential of melanocyte lineage in solar lentigines. J Dermatol Sci. 73(3):251-7.
https://pubmed.ncbi.nlm.nih.gov/24314758/
15 2014 Histologic study of collagen and stem cells after radiofrequency treatment for aging skin. Dermatol Surg. 40(4):390-7.
https://pubmed.ncbi.nlm.nih.gov/24460747/
16 2014 Accelerated differentiation of melanocyte stem cells contributes to the formation of hyperpigmented maculae. Exp Dermatol. 23(9):652-8.
https://pubmed.ncbi.nlm.nih.gov/25040700/
17 2015 Senescent dermal fibroblasts enhance stem cell migration through CCL2/CCR2 axis. Exp Dermatol. 24(7):552-4.
https://pubmed.ncbi.nlm.nih.gov/25808810/
18 2016 Age-related decrease in CD271+ cells in human skin. J Dermatol. 43(3):311-3.
https://pubmed.ncbi.nlm.nih.gov/26300383/
19 2017 Dermal CD271+ Cells are Closely Associated with Regeneration of the Dermis in the Wound Healing Process. Acta Derm Venereol. 8;97(5):593-600.
https://pubmed.ncbi.nlm.nih.gov/28127619/
20 2017 Skin-resident stem cells and wound healing. Nihon Rinsho Meneki Gakkai Kaishi. 40(1):1-11.
https://pubmed.ncbi.nlm.nih.gov/28539548/
21 2017 Localization of collagen type 5 in the papillary dermis and its role in maintaining stem cell functions. J Dermatol Sci. 89(2):205-207.
https://pubmed.ncbi.nlm.nih.gov/29146132/
22 2017 Enhancement of individual differences in proliferation and differentiation potentials of aged human adipose-derived stem cells. Regen Ther. 6:29-40.
https://pubmed.ncbi.nlm.nih.gov/30271837/
23 2018 Laminin-332 regulates differentiation of human interfollicular epidermal stem cells. Mech Ageing Dev. 171:37-46.
https://pubmed.ncbi.nlm.nih.gov/29555367/
24 2018 Extracellular proteoglycan decorin maintains human hair follicle stem cells. J Dermatol. 45(12):1403-1410.
https://pubmed.ncbi.nlm.nih.gov/30320452/
25 2019 CXCL12 regulates differentiation of human immature melanocyte precursors as well as their migration. Arch Dermatol Res. 311(1):55-62.
https://pubmed.ncbi.nlm.nih.gov/30483878/
26 2019 Increase of gremlin 2 with age in human adipose-derived stromal/atem cells and its inhibitory effect on adipogenesis. Regen Ther. 11:324-330.
https://pubmed.ncbi.nlm.nih.gov/31709279/
27 2019 UV irradiation-induced DNA hypomethylation around WNT1 gene:Implications for solar lentigines. Exp Dermatol. 8:723-729.
https://pubmed.ncbi.nlm.nih.gov/31020703/
28 2020 Gremlin 2 increased in the skin with age as a senescence-associated secretory phenotype factor. J Dermatol 47(12):1457-1458.
https://pubmed.ncbi.nlm.nih.gov/32860241/
29 2021 Establishment of Three of Immortalized Human Skin Stem Cell Lines Derived from the Single Donor. Biol Pharm Bull. 44(10):1403-1412.
https://pubmed.ncbi.nlm.nih.gov/34602549/
30 2021 Gremlin 2 suppresses differentiation of stem/progenitor cells in the human skin. Regen Ther. 18:191-201.
https://pubmed.ncbi.nlm.nih.gov/34307797/
31 2021 SASP-induced macrophage dysfunction may contribute to accelerated senescent fibroblast accumulation in the dermis. Exp Dermatol. 30(1):84-91.
https://pubmed.ncbi.nlm.nih.gov/33010063/
32 2021 Senescent cell removal via JAG1-NOTCH1signalling in the epidermis. Exp Dermatol. 30(9):1268-1278.
https://pubmed.ncbi.nlm.nih.gov/33891780/
33 2022 UVA causes dysfunction of ETBR and BMPR2 in vascular endothelial cells, resulting in structural abnormalities of the skin capillaries. J Dermatol Sci. in Press
https://pubmed.ncbi.nlm.nih.gov/35151531/